SON DAKİKA

İstatistik Metoduna Giriş ve İstatistiki Analizler Ders Notu

Bu haber 06 Kasım 2015 - 13:03 'de eklendi ve 432 kez görüntülendi.

Kariyer Memur takipçilerine İstatistik ders notlarını paylaşıyoruz, aşağıdaki linkten Ders Notu paylaşım grubumuza katılabilirsiniz.

Ders Notu Paylaşım Grubumuza Katılmak için Tıklayın

Diğer Tüm Ders Notlarımıza gözatmak için Tıklayın

 
İSTATİST Kariyer Memur takipçilerine İstatistik ders notlarını paylaşıyoruz, aşağıdaki linkten Ders Notu paylaşım grubumuza katılabilirsiniz.

Ders Notu Paylaşım Grubumuza Katılmak için Tıklayın

Diğer Tüm Ders Notlarımıza gözatmak için Tıklayın

 

İSTATİSTİK METODUNA GİRİŞ

İstatistiğin tanımı

İstatistik belirli olayların gözlemlenmesi yoluyla elde edilen verilerin toplanması, işlenmesi ve bu verilerden bir sonuca varılabilmesi için kullanılan tekniklerin tümünü kapsamaktadır. Bir bilim dalı olarak geçmişi ve içinde bulunulan durumu sayısal yöntemlerle analiz ederek gelecek hakkında karar vermeyi kolaylaştırmaktadır. İstatistiğin konusu olan olayları, kendi türünden olayları tam anlamıyla temsil edip edemediğine bakarak ikiye ayırabiliriz. Buna göre olaylar tipik olay ve kollektif olay olarak ayrılabilir.

 

Tipik olay birbirinin tam benzeri olaylardır. Gerekli koşullar oluştuğunda hep aynı şekilde tekrar eden olaylardır. Fiziksel ve kimyasal olaylar tipik olay olarak örnek verilebilirler.olaylar birbirinin aynısı olduğundan bunlardan sadece bir tanesi oluşturduğu topluluğu temsil edebilir.Hidrojen ve oksijenin belirli koşullarda suyu meydana getirmesi tipik bir olaydır.

 

Kollektif olay ise birbirine benzemeyen , ortak yönleri olmasına karşın aralarında farklılıklar bulunan olaylardır. Genellikle canlı varlıklarla ilgili olaylar kollektif olay olarak adlandırılırlar. Nüfus kollektif  olay için iyi bir örnektir. Nüfusu oluşturan bireylerin, insan olmak  ve aynı bölgede veya ülkede yaşamak  gibi ortak özellikleri olmasına rağmen cinsiyet,yaş,meslek gibi çeşitli özellikler bakımından farklıdırlar.

 

Teorik olarak tipik olaylarla kollektif olaylar birbirlerinden kolayca ayrılabilirse de gerçekte aralarında  çok kesin bir çizgi çekilememektedir. Olayların tipik ve kollektif olarak ayrılması bunları etkileyen nedenlere bağlıdır. Olayları etkilen nedenler de genel neden ve rastsal neden olarak ikiye ayrılır. Genel nedenler aynı topluluktaki bütün olaylar üzerinde hep aynı yönde ve aynı derecede etkindir. Rastsal nedenler ise olayları zıt yönlerde ve çeşitli derecelerde etkilerler. Örneğin verimi etkileyen çeşitli faktörlerden  toprağın cinsi ve iklim genel neden; hava değişimleri, uygulanan  tarımsal teknikler, tohumun kalitesi gibi faktörler rastsal neden olarak tanımlanabilir. Büyük sayılar kanununa göre (Bernoulli) gözlem sayısı arttıkça sonuçlar rastsal nedenlerin etkisinden kurtulmaktadır. Bu kanunun işleyişine en iyi örnekler  rastsal faktörlerin en belirgin olduğu şans oyunları olarak gösterilmektedir. İstatistiğin konusunu tipik olayların değil, kollektif olayların oluşturduğunu söyleyebiliriz.

 

Ana kütle

Ana kütle kollektif olay özelliğinde ve aynı cinsten(homojen) birimlerin meydana getirdiği topluluktur. Birimler tamamen aynı özelliklere sahip olmasalar da , bazı ortak yanlarının bulunması gereklidir.örneğin yıl bir kütle olarak alınırsa günler  birimdir. Kütleler çeşitli şekillerde sınıflandırılabilirler. Birimleri sayılabilen kütlelere belirli kütle, sayılamayanlara belirsiz kütle adı verilir. Bir ülkenin nüfusu, bir şehirdeki binalar belirli kütle,bir nehirdeki balıklar, ormandaki karıncalar sayılamayacağı için belirsiz kütledir. Kütleler sürekli süreksiz olarak da sınıflanabilirler. Arsa ,tarla gibi birbirine bitişik olan birimler sürekli,insan, otomobil gibi birimler  süreksiz kütleleri oluştururlar.

 

 

 

Birim

 

Kütleyi oluşturan kollektif olayların her birine birim adı verilir. Canlılar(insan,hayvan) sosyal bir kuruluş(aile,şirket) bir olay(doğum,ölüm,evlenme) birim  olarak kabul edilir. Birimler mutlaka sayılabilir veya ölçülebilir özelliklere sahip olmalıdırlar. Birimler aynı zamanda homojen olmalıdırlar. İstatistikte homojenlik eşitlik anlamına gelir. Aynı tanıma uygun birimler biçimsel homojenlik  tanımına uymaktadır.

 

Örnek

 

Anakütle bütün birimlerin oluşturduğu topluluktur. Anakütleden seçilen birimlerin oluşturduğu alt topluluk  örnek olarak adlandırılır. Bir firmada satın alınan hammaddenin tamamı anakütleyi, kalite kontrolü için alınan parça örneği oluşturur.

 

Vasıf (nitelik) ve şık

 

Birimlerin sahip oldukları ve birbirlerinden ayırdedilmelerine yarayan özellikler  vasıf olarak adlandırılır. Nüfus sayımında birim insandır. İnsanların yaş, boy ,medeni durum gibi özellikleri vasıftır. Belli bir vasıf çeşitli biçimlerde  ortaya çıkabilir. Bu ortaya çıkış biçimleri de şık adını alır. Örneğin medeni durumun , “evli”, “bekar”, “boşandı”, “dul”  şeklinde 4 şıkkı vardır.

 

İstatistik analiz

 

İlk bilgilerin toplanması (rölöveler) aşamasında araştırmanın konusu ve birimlerin tarifi yapılır. Rölövenin zamanı ve kapsamı belirlenir. İkinci aşamada toplanan veriler matematik ve istatistik analizlere uygun, düzenli duruma getirilir. Verilerin tasnifi ve gruplaması yapılır. Üçüncü aşamada düzenlenmiş ve gruplandırılmış veriler tablolar ya da grafikler şeklinde sunulur. Son aşamada ise çeşitli yöntemler kullanarak eğilimler ortaya çıkarılır, olaylar arasındaki ilişkiler bulunur ve karar verilerek sonuca ulaşılır.

 

VERİLERİN TOPLANMASI

 

Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Toplanan veriler kolay ve anlaşılır bir biçimde düzenlenebilir. Bu düzenleme çeşitli şekillerde yapılabilir.verileri küçükten büyüye doğru sıralayıp düzenli hale getiren yöntemlerden bir tanesi gövde-yaprak (stem –and-leaf)  görüntüsü yöntemidir. Yöntemde sayılar basamaklarına ayrılarak bir kısmı gövde bir kısmı da yaprak şeklinde gösterilir.

 

Örnek: Aşağıdaki sayılar saat 24 ile 7 arasında bir telefon santraline gelen toplam 911 çağrının  36 günlük dağılımını göstermektedir.

 

22            76            6             23            54            31

30            27            35           19            71            48

17            30            48           28            105          22

63            41            26           37            35            44

11            41            64           65            52            63

8             34            38           32            43            30

Bu verileri gövde-yaprak şeklinde düzenleyelim:

 

 

gövde-yaprak gösteriminde verilerin rank değeri de belirlenerek bazı istatistik ölçülerin hesaplanması kolaylaşır. Rank için ilk veri 1 den başlayacak şekilde tüm veriler sırayla numaralandırılır.06 ya  1, 08 e 2, 11 e 3 , 17 ye 4 rank numarası verilerek devam edilir.Veriler derecelendirildikten sonra istatistikte çok kullanılan bir ortalama ölçüsü medyan kolaylıkla hesaplanabilir. Medyan sıranmış bir dizide tam ortadaki elemanın değeridir. Eğer dizinin eleman sayısı çift ise ortadaki iki elemanın aritmetik ortalaması alınır. Örnekteki verilere uygularsak;

 

Veri sayısı 32 olduğu için 18. ve 19. elemanların ortalaması alınacaktır. Her iki elemanın değeri de 35 olduğundan  (35+35 )/2 = 35  medyan değeridir

 

Aşağıdaki veri grubunu gövde-yaprak şeklinde düzenleyiniz.(60 adet)

 

 

 

5,97,78,95,27,37,76,37,35,75,6
5,66,76,977,36,26,56,59,27,1
4,14,97,57,59,67,95,35,56,16,1
8,38,18,14,57,39,45,86,76,76,9
6,97,16,97,77,78,18,76,56,79,1
7,16,35,17,38,38,99,35,765,9

 

Sınıflama

İncelenen  vasfın aynı şıkkına sahip birimleri kümeler halinde bir araya getirme işlemine sınıflama (tasnif) denir. Vasıfların çeşitli şıklarının kütlede kaç defa tekrarlandığını gösteren sayılar frekans adını alır.  Bir sınıfa düşen veri sayısı o sınıfın frekansıdır diyebiliriz. Verilerin sınıflar ve bu sınıflara karşı gelen frekanslar şeklinde düzenlenmesine frekans dağılımı veya frekans tablosu denir.

 

Ele alınan vasfın şıkları çok sayıda ise sınıflamada sorun çıkabilir. Bu durumda gruplamaya başvurulur.

 

Gruplama

Bir vasfın birbirine yakın olan şıklarını bir araya getirmeye gruplama denir. Örneğin meslek istatistikleri yapılırken serbest çalışan doktor,avukat,dişçi,tüccar gibi meslekler “serbest meslekler”  grubuna alınmaktadır. Gruplama ile toplanan veriler  hakkında daha geniş ve açık bilgiler alınabileceği gibi, her gruba düşen frekans sayısı da büyür. Gruplamanın bu yararları yanında bazı sakıncaları da vardır. Örneğin grup sınırlarının belirtilmesi önemli bir sorundur. Günlük gelirleri  “12-16 dolar”, “16-20 dolar” gibi grupladığımızda , 16 doların hangi gruba gireceği belirsizdir. Bu durumda “12-16 dolardan az”, “16-20 dolardan az” şeklinde bir gruplamaya gidilmelidir. Gruplamada grup sayısı genellikle  7-20 arasında tutulmaktadır. Nicel vasıflara göre yapılan gruplamada gruplara “sınıf”, gruba girebilecek en küçük şıkkın değerine “ sınıf alt sınırı”, en büyük şıkkın değerine de “sınıf üst sınırı”, bunlar arasındaki farka  “sınıf aralığı” ve sınıf sınırlarının aritmetik ortalamasına “sınıf ortalaması” adı verilir.

 

 

 

 

Vasıf Kombinezonu

Bir kütleyi oluşturan bütün birimler bir vasfın şıklarına göre  sınıflandıktan sonra , diğer bir vasfın şıklarına göre tekrar sınıflandırılırsa buna vasıf kombinezonu veya bileşik sınıflama adı verilir.

 

Aşağıdaki tabloda nüfusun yaş, cinsiyet ve medeni duruma göre vasıf kombinezonunu göstermektedir.

 

YaşBekarEvliDulBoşanmış
SınıflarıErkek    KadınErkek   KadınErkek   KadınErkek   Kadın
0 – 9    
10 -19    
20 – 29    
30 – 39    
………..    
     

 

Vasıf kombinezonu ile daha homojen gruplar elde edilmektedir . Ayrıca kütlenin bileşimi daha ayrıntılı olarak belirtilmektedir.  Ancak vasıf kombinezonunda aşırıya kaçılmamalıdır, tablolar büyür ve yayınlanması güçleşir.

 

Seriler

Sayısal olarak düzenlenmemiş verilerin artan veya azalan büyüklükte sıraya konmuş, düzenlenmiş şekline seri denir. Serideki en büyük değerle en küçük değer arasındaki farka “yayılma bandı” veya “rank” adı verilir. Seriyi oluşturan sayılardan her biri bir terimdir. Seriler çeşitli şekillerde sınıflandırılırlar. En çok kabul görmüş sınıflandırma  aşağıdaki gibidir.

  • Zaman serisi
  • Mekan serisi
  • Bölünme serisi

 

Zaman serisi

Verileri  gün, hafta, ay, yıl gibi zaman vasfının şıklarına göre düzenlenmiş olarak gösteren serilerdir. Zaman serisi iki sütundan oluşur. Birinci sütunda zaman vasfının şıkları, ikinci sütunda ise olaya ait değerler bulunur.

 

Örnek: Yıllara göre Türkiye nüfusu

YıllarNüfus(milyon)
195020,9
195524,1
196027,8
196531,4
197035,6

Mekan serisi

 

Toplanan verileri mekan vasfının şıklarına göre sıralanmış olarak gösteren seriler mekan serileri adını alır.Mekan vasfının şıkları ülke, bölge, il, ilçe, köy gibi şıklar olabilir. Seri iki sütundan oluşur. İlk sütunda mekan vasfının şıkları, ikici sütunda değerler bulunur.

 

Örnek: İllere göre 1970 yılı nüfus değerleri

İllerNüfus(bin kişi)
İstanbul3.019
Ankara2.042
İzmir1.427
Adana1.035
Bursa848

 

 

Bölünme serisi

 

-- Haberin Devamı Aşağıda --

Zaman ve mekan vasfının dışında kalan maddi vasıflar olarak tanınan vasıfların şıklarına göre düzenlenmiş seriler bölünme serileridir. Bir sınıftaki öğrencilerin aldığı notlar, boy uzunluğu, ağırlık , işçi sayısı  gibi vasıflar örnek verilebilir. Bölünme serileri sayısal olmayan vasıflara göre de düzenlenebilir. Ancak sayısal vasıflara göre düzenlenmiş bölünme serileri daha çok kullanılmaktadır.  Bu tür bölünme serileri 4 sınıfta toplanabilir.

  • Basit seriler
  • Sınıflanmış(tasnif edilmiş) seriler
  • Gruplanmış seriler
  • Bileşik seriler

 

Basit seriler

 

Sayısal verilerin küçükten büyüğe ya da büyükten küçüğe doğru sıralanması ile elde edilen serilerdir.

Örnek: 12 öğrencinin bir dersten aldığı notlar

 

Notlar(xi )
0
25
30
30
45
50
50
50
65
70
75
90

 

 

Sınıflanmış seri

 

Gözlem sonuçlarının düzenlenerek birinci sütunda olaya ait değerleri, ikinci sütunda frekansları  gösterecek şekilde  hazırlanırsa sınıflanmış seri elde edilir.

 

Örnek: 12 öğrencinin bir derse ait notları (basit seri için verilen örnek) ve frekansları

 

Notlar(xi)Frekanslar(ni)
01
251
302
451
503
651
701
751
901

 

Gruplanmış seri

 

Bu tip seride gözlem değerleri sınıflar şeklinde gruplandırılarak gösterilirler . ikinci sütunda yine frekanslar yer alır. Yukarıda verilen notlar örneğini 25 ‘ er aralıklı olarak gruplarsak aşağıdaki tablo elde edilir.

 

Not sınıflarıFrekanslar(ni)
0-25 den az1
25-50 den az4
50-75 den az5
75-100 den az2

 

Bileşik seri

 

Gözlem sonuçlarını iki veya daha fazla vasfa göre düzenleyen seriler bileşik serilerdir. Bileşik serilerde birden çok vasıf ile ilgili bilgiler  değerlendirildiği için  vasıflar arasında bir ilişkinin var olup olmadığı kolaylıkla öğrenilir. Basit bileşik seri  iki sütundan meydana gelir.sütunlardan birinde veriler vasıflardan birine göre küçükten büyüğe doğru sıralanır. Diğer sütunda ise, her birimin diğer vasfına ait gözlem değerleri gösterilir.

 

Su miktarıBuğday üretimi
 5-6 dan az6-7 den az7-8 den az8-9 dan azToplam
4-5 den az1   1
5-6 dan az 2  2
6-7 den az  1 1
7-8 den az   11
Toplam12115

 

 

 

 

 

 

 

 

 

Bileşik serileri gruplayarak tablo şeklinde de gösterebiliriz. Buğday üretimi ile harcanan su arasındaki ilişkiyi tablo şeklinde gösterelim.

 

Bu tabloya iki vasıf arasındaki ilişkiyi gösterdiği için “korelasyon tablosu” adı da verilmektedir. Tablo içersindeki sayılar frekansları göstermektedir. Frekanslar sol üst köşeden sağ alt köşeye doğru toplandığı için ilişki pozitiftir.Aksi durumda ilişkinin negatif olduğu, bir değişkenin değeri artarken diğerinin azaldığı ortaya çıkacaktır.

 

Frekans bölünmeleri

 

Bir bölünme serisinin grafiği apsiste sınıflar, ordinatta frekanslar gösterilerek çizilir. Çizilen eğrilerin şekillerine göre bölünme serileri bazı tiplere ayrılır. Bunlar şu şekilde özetlenebilir:

 

  • Simetrik seri

 

Frekansların serinin maksimum noktası etrafında dağıldığı seriler simetrik serilerdir. Maksimum frekans ortadadır. Bu noktanın iki yanında frekanslar önce hızlı sonra yavaş azalırlar. Bir olaya etki eden faktörler tesadüfi olarak ortaya çıkıp olayı zıt yönlerde etkiliyorsa ve bu etkilerin şiddeti birbirine eşit ise bu tip eğri ortaya  çıkar.   Kollektif olaylara ( ağırlık, zeka,uzunluk gibi) uygun olduğu için  olasılık dağılımlarının çoğunda normal  bölünme kullanılır. Simetrik seri maksimum frekansın normalin üstünde olması durumunda “sivri” , normalin altında olması durumunda “basık” olabilir.

 

 

 

  • Asimetrik seri

 

Frekanslar serinin tam ortasında değil  de, ortadan önceki noktada yığıldığında “sağa eğik seri”,  ortadan sonraki bir noktada yığıldığında  ise, “sola eğik seri” ortaya çıkar.sağa eğik seriye (uzun kuyruk sağda) asimetrisi pozitif seri, sola eğik seriye(uzun kuyruk solda) asimetrisi negatif seri denir.bir işyerindeki ücretlerin çoğu ortalama ücretin altında ise eğri sağa eğik, üstünde ise sola eğik olacaktır. Yaşa göre tasarruf eğilimi de negatif asimetri  gösterecektir.

 

  • Çok maksimumlu seri

 

Bazı serilerde frekanslar iki veya daha çok sayıda maksimum yapabilir. İki maksimumlu seriler daha çok kütlenin homojen birimlerden oluşmayıp, iki farklı türü kapsadığı durumlarda ortaya çıkar. Kadınlarla erkeklerin boy dağılımları aynı grafik üzerinde gösterildiğinde ortalamalar farklı olduğu için maksimum noktalar birbirinden uzaklaşır.

 

 

  • J , ters J  ve U serileri

 

J serilerinde küçük değerlerin frekansları düşük, büyük değerlerin frekansları yüksektir.Ters J serisinde ise bunun aksidir.Kalp, felç gibi yaşlılık hastalıklarından ölümler ileri yaşlarda daha sık görüldüğü için  bu hastalıklardan ölümlerin yaşlara göre bölünmesi J serisine uyar. Yaşa göre ölüm oranlarının bölünmesi de U serisine örnek verilebilir. Çünkü düşük ve ileri yaşlarda ölüm oranı yüksek olmaktadır. Banka, servis istasyonu gibi müşterilere hizmet veren yerlerde müşterilerin gelme sürelerinin  bölünmesi de ters J serisine uymaktadır.

 

 

Grafikler

 

Gözlem değerlerinin rakamlarla gösterilmesi  olayın genel eğiliminden çok ayrıntılara dikkat çekilmesine neden olur. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar. Grafikler değişik şekillerde sınıflandırılabilirler.  Basit seriler grafikle gösterilemediği için tablo şeklinde sunulmaları uygundur. Sınıflanmış serilerde her şıkkın frekansına göre uzunluğu değişen  çizgiler ya da ayrık sütunlar kullanılır.

 

Örnek: 1988-1994 döneminde kişi başına GSMH(dolar) değerleri verilmektedir. Bunları kullanarak sütun diyagramını çizelim.

 

YıllarGSMH
19881706
19891986
19902682
19912620
19922708
19933004
19942193

Sütun diyagramı

 

 

 

Gruplanmış serilerin grafiği çizilirken histogramlar kullanılır. Histogramda her sınıfın frekansı, o sınıfa ait sütunun yüksekliği ile değil , alanı ile gösterilir.

 

Örnek: bir okuldaki öğrencilerin matematik dersinden aldıkları notların dağılımı

 

NotlarÖğr.sayısı
0-2 den az100
2-4 den az200
4-6 dan az500
6-8 den az150
8-10 dan az50

 

Bu verilere ait histogram

 

 

 

 

 

İSTATİSTİKİ ANALİZLER

 

Binominal Test
Binom modeli, istenilen sonucun olma olasılığı p iken, n bağımsız denemede tam x adet istenilen sonucun olması olasılığını veren modeldir.
Örnek: Demir bir para ile yazı tura atıdığında, yazı gelme olasıllığı 1/2dir. Bu hipoteze dayanarak 40 defa yazı tura atılarak sonuçlar bir yere not edildiğinde, atılanların ¾’ünün yazı olması ve gözlemlenen anlamlılık derecesinin küçük (0.0027) olması durumunda, olasılığın ½ ihtimalinden uzak olması yani atılan paranın hileli olması söz konusudur.
Cluster Analizi (Kümeleme Analizi)
Kümeleme analizi, bireylerin veya uyarıcıların benzerliklerine göre gruplarda veya kümelerde toplanmasını amaçlayan birçok değişkenli istatistik analizidir.Ayırma (Diskriminant) analizinden farklı olarak kümeleme analizinde faktör analizindeki gibi veri matrisi analiz öncesi tahmin ve kriter alt setlerine bölüştürülmez. Kümeleme analizinde dikkatler, bireylerin araştırmada ölçülen tüm değişkenler üzerindeki değerlerini hesaba katarak ortaya çıkacak kümeler veya gruplar üzerinde toplanmıştır. Bireyler arasındaki benzerlikleri saptamak amacıyla uzaklık ölçüleri, korelasyon ölçüleri veya nitelik verilerinin benzerlik ölçüleri kullanılabilir.
Örnek: Kişilerin sosyo-ekonomik nitelikleri ve siyasal eğilimleri esas alınarak bu özelikler itibariyle benzer olan kişilerin aynı gruplarda veya kümelerde toplanması amacıyla tesadüfi olarak seçilen 64 kişi üzerinde 19 değişkenin değeri ölçülmüştür. Bu araştırmanın amacı, saptana 19 değişkenin kişileri farklı gruplarda topllamada hangi ölçüde yeterli olduğunu belirlemek ve böylece daha geniş kapsamlı çalışmalarda bu değişkenlerin kullanıp kullanılamayacağını kararlaştırmaktır.
Kümeleme analizinin pazarlama sorunlarının çözümüne uygulanması oldukça yaygın bir yöntemdir. Pazar bölümlenmesi, pazar testinin uygulanacağı bölgelerin saptanması bu konuda örnek verilebilecek birkaç konudur.
Diskriminant (Ayırma) Analizi
Ayırma analizi, iki veya daha fazla sayıdaki grubun ayırımı ile ilgilenen birçok değişkenli ilgi analizidir. Amaçları arasında analiz öncesi tanımlanmış iki veya daha fazla sayıda grubun ortalama nitelikleri arasında önemli farkların olup olmadığının test edilmesi, gruplar arasındaki farka herbir değişkenin katkısının saptanması ve grup içi değişime oranla gruplar arasındaki ayrımı maksimize eden tahmin değişkenleri kombinasyonunun belirlenmesi sayılabilir.
Örnek: ‘Bira içenleri’, ‘bira içmeyenlerden’ ayırt etmenin bir pazarlama sorunu olduğu kabul edilirse, büyük bir bira üreticisinin yaptığı araştırma ayırma analizine örnek olarak gösterilebilir. Bu nedenle, tesadüfi olarak seçilen 500 kişilik bir tüketici bölümünü örnek olarak alınmış ve bu kişilerin bira içip içmedikleri, cinsiyetleri ve sporla ilgilenme dereceleri saptanmıştır. Cinsiyet ve sporla ilgilenmenin tahmin değişkenleri olarak kullanılmalarının nedeni, daha önceki çalışmaların bu değişkenlerle bira içme arasında kuvvetli bir ilginin olduğunu göstermiş olmasıdır.
Ayırma analizi sonuçlarının test edilme olanağının bulunması sonuçların geçerliliğini ve güvenilirliğini ve dolayısıyla analizin gücünü artıran önemli bir etmendir.

Faktör Analizi:
Faktör analizi veriler arasındaki ilişkilere dayanarak verilerin daha anlamlı ve özet bir biçimde sunulmasını sağlayan bir çok değişkenli istatistiksel analiz türüdür. Amaç esas olarak değişkenler arasındaki karşılıklı bağımlılığın kökenini araştırmaktadır.
Örnek: Pazarlama araştırmacısı tüketicilerin marka tercihleri, mağaza tercihleri, sosyo-ekonomik demografik ve psikolojik nitelikleriyle ilgili çeşitli verileri toplayabilir. Ancak, araştırmacının son amacı, tüketicilerin çeşitli markalara karşı tutumları veya eğilimleri gibi bazı temel değişkenlerin veya boyutların saptanmasıdır. Tüketicilerin markalara tutumları, aile büyüklüğü ve satınalma sıklığı gibi çeşitli değişkenlerle ölçülebilir. Şayet bu tür değişkenler arasında önemli korelasyonlar var ise ‘markalara karşı tutum’ bir faktör olarak kabul edilir.

İstatistiksel Hipotez Testleri
Araştırma hipotezlerinin yazılı hale dönüştürülüp daha sonra istatistiksel olarak test edilebilecek bir şekle dönüştürülmesi, bir araştırmanın istatistiksel hipotez test aşamasıdır. İstatistiksel bir hipotez aslında bir tesadüfi değişkenin dağılımı ile ilgili yapılan bir varsayımdır. Uygulamada bir hipotez genellikle ilgili ana kütlenin bir veya daha fazla parametresinin belirlenmesi anlamını taşır. Hipotez testinde, hipotezin belirlenmesinden sonraki önemli bir aşamada önem derecesinin saptanmasıdır, başka bir deyişle birinci tip hata a’nın düzeyinin saptanmasıdır. Karar alıcı birinci tip hata a’yı saptarken test sonucunda yanlış karar almaktan ötürü katlanmak zorunda olacağı kaybı düşünmektedir. Uygulamada en çok kullanılan önem dereceleri 0,1; 0,05 ve 0,01dir. 0,05 önem derecesinde birinci hipotez red edildi mi sonuç önemli, 0,01 önem derecesinde red edildiğinde sonuç çok önemli olarak nitelendirilir.

Test istatistikleri olarak ilgili konuya göre parametrik veya parametrik olmayan (nonparametrik) testler kullanılabilir.
Ki-kare Testi:
Ki-kare ilgi analizi pazarlama araştırmalarında çok yaygın olarak kullanılan bir istatistiksel analiz türüdür. Bu yaygın kullanımın en önemli nedenleri, çok basit bir analiz türü olması, varsayımlarının azlığı ve çok güçsüz ölçeklerde ölçülmüş verilere uygulanabilmesidir.
Amaçları şunlar olabilir:
1)Örnek değerlerinin dağılımının belirli bir teorik dağılıma uyma derecesinin saptanması (uygunluk testi)
2)İki veya daha fazla nitelik esas alınarak sınıflandırılan veriler değerlenerek bu nitelikler arasındaki ilginin derecesinin belirlenmesi (bağımsızlık testi)
Araştırmacının amacı, örnek değerlerinde gözlenen ilgi hakkında bir yargıya varmaktır. Odak noktası bireylerin seçilen bazı nitelikleridir. İlginin fonksiyonel formunun doğrusal olması gerekmez. Analiz doğrusal olmayan ilişkilere de uygulanabilir.
Örnek: Belirli tip bir elektrik resistansının dayanıklılığını test etmek amacıyla 360 resistans tesadüfi olarak seçilmiş ve belli gözlem değerleri saptanmıştır. Dağılımın %5 önem derecesinde normal dağılımdan mı gelmekte olduğunu anlamak için ki-kare uygunluk testi yapılabilir.

Kolmogorov-Simirnov test istatistiği:
Bu test prosedüründe yine ki-kare testinde olduğu gibi belli bir önem derecesinde örnek değerlerinin dağılımının test öncesi saptanan belirli bir dağılıma uyup uymadığı araştırılır. Böylece parametrik istatistik tekniklerinin kullanılması ile ilgili önemli varsayımlardan birinin de test edilmesine imkan sağlanmış olur (Uygunluk testi).

Korelasyon analizi
Korelasyon analizi esas olarak tahmin ve kriter değişkenleri arasındaki ilginin yönü ve derecesi ile ilgilenir. Analizin en önemli varsayımı değişkenler arasındaki ilginin doğrusal olduğu yönündedir. İlginin derecesini ölçmede korelasyon katsayısı “r” kullanılır. Basit korelasyon analizinden söz edilebileceği gibi, çoklu korelasyon analizi yapmak da mümkündür.

Korrespondans analizi:
Korrespondans analizinin amaçlarından bir tanesi, iki sayısal değişken arasındaki ilişkiyi tanımlamak ve aynı zamanda her degişkenin kategorileri arasındaki ilişkileri belirlemektir. Her değişken için, düzleme yansıtılan kategoriler arasındaki mesafe yakınlık ilişkisini ifade eder.

Mc Nemar Nonparametrik testi (Aynı anakütledeki değişikliklerin testi):
Tek bir anakütleden tesadüfi ve bağımsız olarak çekilmiş bir örnek üzerinde birden çok ölçme yapıldığı durumlarda bu ölçmeler arasındaki farkın anlamlı veya önemli olup olmadığını saptamayı amaçlar. Bu testin en önemli niteliği, nominal ölçekte ölçülmüş, önce ve sonra ölçmelerin yapıldığı deneysel serimlere kolaylıkla uygulanabilmesidir.
Örnek: Bir meşrubat firması ürünlerinin dağıtımının yeterince yaygın olmamasından şikayetçidir. Dağıtımı daha yaygın bir hale dönüştürmek amacıyla bir tutundurma kampanyası planlanmıştır. Bu kampanyanın etkinliğini saptamak amacıyla bir ay sürecek olan bu kampanyadan önce ve sonra kampanyanın yönetildiği yöreden tesadüfi olarak seçilecek dağıtıcıların meşrubatı satıp satmadıkları belirlenecektir. Bu amaçla 30 dağıtıcı tesadüfi olarak seçilir. Kampanya öncesi ve sonrası ölçmelerle bu meşrubatı 7 dağıtıcının kampanya öncesi ve sonrası bu meşrubatı satmadığı, 3 dağıtıcının eskiden olduğu gibi kampanya sonrası da meşrubatı satmaya devam ettiği, 16 dağıtıcının eskiden bu meşrubatı satmazken kampanya sonrası satmaya başladığı ve 4 dağıtıcının ise tersine eskiden bu meşrubatı satarken kampanya sonrası satıştan vazgeçtikleri saptanmıştır. Bu koşullar altında kampanyanın gerçekten başarılı sayılıp sayılamayacağını belirlemek için Mc Nemar testi uygulanabilir.
Regresyon analizi
Bir kriter değişkeni ile bir veya daha fazla sayıda tahmin değişkenleri arasındaki ilgiyi sayısal hale dönüştürmede kullanılan istatistiksel analizdir. Regresyon analizi esas olarak değişkenler arasında ilişkinin niteliğini saptamayı amaçlar. Tahmin değişkeni olarak bir değişken kullanılırsa basit regresyon, tahmin değişkenleri olarak iki veya daha fazla değişken kullanılırsa çoklu regresyon analizinde söz etmek mümkündür. Amaç her tahmin değişkenininin kriter değişkenindeki toplam değişmeye olan katkısının saptanması ve dolayısıyla tahmin değişkenlerinin doğrusal kombinasyonunun değerinden hareketle kriter değerinin tahmin edilmesidir.
Örnek: Tüketicilerin gelir düzeyleri ile A malının satışları arasındaki ilişkinin doğrusal olduğu varsayılarak iki değişken arasındaki ilişki matematiksel olarak gösterilebilir.
Varyans Analizi Tablosu (ANOVA)

İkiden fazla ana kütle aritmetik ortalamasının karşılaştırılması ile ilgili testte izlenecek süreç ANOVA tablosu ile özetlenebilir. Buna göre F test istatistiği varyans analizi yardımıyla kullanılır: Farklı anakütlelerden seçilen örnek aritmetik ortalamaları arasındaki farkların karelerinin ortalaması, herbir örneğin kendi içindeki farkların karelerinin ortalamasına bölünür. F test istatistiği belirlendikten sonra sonuca varılır.
Örnek: Bir firma yöneticileri yeni ambalaj makineleri satın almayı planlamaktadır. Buna göre piyasada en çok tutulan üç marka ambalaj makinesinden hangisini satın almaları gerektiğine karar verebilmek için her bir makine beşer saat çalıştırılmış ve saat başına ambalaj miktarları saptanmıştır. Bu verilere dayanarak %1 önem derecesinde firma yöneticilerinin üç makinenin üretim miktarları arasında önemli bir fark olup olmadığını test etmeleri gerekir ve verilere varyans analizi uygularlar.
Wilconxon nonparametrik testi:
Bu testte, bağımlı iki ana kütle aritmetik ortalamasının belirli bir önem derecesinde birbirinden önemli derecede farklı olup olmadığı test edilir.
Örnek: Dergi reklamlarında kullanılacak mesajın kısa veya uzun olmasına karar vermek için aynı reklam kopyalarında kısa ve uzun reklam masajları kullanılarak 9 çift reklam mesajı geliştirilmiştir. Bu reklam mesajlarını hatırlanma derecesi tesadüfi olarak seçilen 20 kişi üzerinde araştırılmış ve belli değerler bulunmuştur. Belli bir önem derecesinde kısa mesajlı reklam kopyalarının uzun mesajlı reklam kopyalarından daha fazla hatırlanıp hatırlanmadığını test etmek için Wilcoxon testi uygulamak gerekir.

Bir önceki yazımız olan 2016 PÖH-Özel Harekat Polisi Alımı Ne Zaman? başlıklı makalemizi de okumanızı öneririz.

HABER HAKKINDA GÖRÜŞ BELİRT

Yorum Yok

YASAL UYARI! Suç teşkil edecek, yasadışı, tehditkar, rahatsız edici, hakaret ve küfür içeren, aşağılayıcı, küçük düşürücü, kaba, pornografik, ahlaka aykırı, kişilik haklarına zarar verici ya da benzeri niteliklerde içeriklerden doğan her türlü mali, hukuki, cezai, idari sorumluluk içeriği gönderen kişiye aittir.